1,641 research outputs found

    Influence of entrance-channel magicity and isospin on quasi-fission

    Get PDF
    The role of spherical quantum shells in the competition between fusion and quasi-fission is studied for reactions forming heavy elements. Measurements of fission fragment mass distributions for different reactions leading to similar compound nuclei have been made near the fusion barrier. In general, more quasi-fission is observed for reactions with non-magic nuclei. However, the 40^{40}Ca+208^{208}Pb reaction is an exception, showing strong evidence for quasi-fission, though both nuclei are doubly magic. Time-dependent Hartree-Fock calculations predict fast equilibration of N/ZN/Z in the two fragments early in the collision. This transfer of nucleons breaks the shell effect, causing this reaction to behave more like a non-magic one in the competition between fusion and quasi-fission. Future measurements of fission in reactions with exotic beams should be able to test this idea with larger N/ZN/Z asymmetries.Comment: accepted for publication in Physics Letters

    Effect of Pauli repulsion and transfer on fusion

    Full text link
    The effect of the Pauli exclusion principle on the nucleus-nucleus bare potential is studied using a new density-constrained extension of the Frozen-Hartree-Fock (DCFHF) technique. The resulting potentials exhibit a repulsion at short distance. The charge product dependence of this Pauli repulsion is investigated. Dynamical effects are then included in the potential with the density-constrained time-dependent Hartree-Fock (DCTDHF) method. In particular, isovector contributions to this potential are used to investigate the role of transfer on fusion, resulting in a lowering of the inner part of the potential for systems with positive Q-value transfer channels.Comment: Proceedings of an invited talk given at FUSION17, Hobart, Tasmania, AU (20-24 February, 2017

    Microscopic study of the effect of intrinsic degrees of freedom on fusion

    Full text link
    Fusion cross-sections are computed for the 40^{40}Ca+40+^{40}Ca system over a wide energy range with two microscopic approaches where the only phenomenological input is the Skyrme energy density functional. The first method is based on the coupled-channels formalism, using the bare nucleus-nucleus potential calculated with the frozen Hartree-Fock technique and the deformation parameters of vibrational states computed with the time-dependent Hartree-Fock (TDHF) approach. The second method is based on the density-constrained TDHF method to generate nucleus-nucleus potentials from TDHF evolution. Both approaches incorporate the effect of couplings to internal degrees of freedoms in different ways. The predictions are in relatively good agreement with experimental data.Comment: 6 pages, 11 figures. Invited talk to FUSION1

    A six-dimensional H2-H2 potential energy surface for bound state spectroscopy

    Full text link
    We present a six-dimensional potential energy surface for the H2-H2 dimer based on ab initio electronic structure calculations. The surface is intended to describe accurately the bound and quasibound states of the dimers H2-H2, D2-D2, and H2-D2 that correlate with H2 or D2 monomers in the rovibrational levels (v, j) = (0, 0), (0, 2), (1, 0), and (1, 2). We use four experimentally measured transition energies for these dimers to make two empirical adjustments to the ab initio surface; the adjusted surface gives computed transition energies for 56 experimentally observed transitions that agree with experiment to within 0.036 cm^{-1}. For 29 of the 56 transitions, the agreement between the computed and measured transition energies is within the quoted experimental uncertainty. We use our potential energy surface to predict the energies of another 34 not-yet-observed infrared and Raman transitions for the three dimers.Comment: 44 pages, 17 tables, 6 figures; accepted by Journal of Chemical Physic

    Wherever I may roam: social viscosity and kin affiliation in a wild population despite natal dispersal

    Get PDF
    Dispersal affects the social contexts individuals experience by redistributing individuals in space, and the nature of social interactions can have important fitness consequences. During the vagrancy stage of natal dispersal, after an individual has left its natal site and before it has settled to breed, social affiliations might be predicted by opportunities to associate (e.g., distance in space and time between natal points of origin) or kin preferences. We investigated the social structure of a population of juvenile great tits (Parus major) and asked whether social affiliations during vagrancy were predicted by 1) the distance between natal nest-boxes, 2) synchrony in fledge dates, and 3) accounting for spatial and temporal predictors, whether siblings tended to stay together. We show that association strength was affected predominantly by spatial proximity at fledging and, to a lesser extent, temporal proximity in birth dates. Independently of spatial and temporal effects, sibling pairs associated more often than expected by chance. Our results suggest that the structure of the winter population is shaped primarily by limits to dispersal through incomplete population mixing. In addition, our results reveal kin structure, and hence the scope for fitness-related interactions between particular classes of kin. Both spatial-mediated and socially mediated population structuring can have implications for our understanding of the evolution of sociality

    Atomic spectral-product representations of molecular electronic structure: metric matrices and atomic-product composition of molecular eigenfunctions

    Get PDF
    Recent progress is reported in development of ab initio computational methods for the electronic structures of molecules employing the many-electron eigenstates of constituent atoms in spectral-product forms. The approach provides a universal atomic-product description of the electronic structure of matter as an alternative to more commonly employed valence-bond- or molecular-orbital-based representations. The Hamiltonian matrix in this representation is seen to comprise a sum over atomic energies and a pairwise sum over Coulombic interaction terms that depend only on the separations of the individual atomic pairs. Overall electron antisymmetry can be enforced by unitary transformation when appropriate, rather than as a possibly encumbering or unnecessary global constraint. The matrix representative of the antisymmetrizer in the spectral-product basis, which is equivalent to the metric matrix of the corresponding explicitly antisymmetric basis, provides the required transformation to antisymmetric or linearly independent states after Hamiltonian evaluation. Particular attention is focused in the present report on properties of the metric matrix and on the atomic-product compositions of molecular eigenstates as described in the spectral-product representations. Illustrative calculations are reported for simple but prototypically important diatomic (H_2, CH) and triatomic (H_3, CH_2) molecules employing algorithms and computer codes devised recently for this purpose. This particular implementation of the approach combines Slater-orbital-based one- and two-electron integral evaluations, valence-bond constructions of standard tableau functions and matrices, and transformations to atomic eigenstate-product representations. The calculated metric matrices and corresponding potential energy surfaces obtained in this way elucidate a number of aspects of the spectral-product development, including the nature of closure in the representation, the general redundancy or linear dependence of its explicitly antisymmetrized form, the convergence of the apparently disparate atomic-product and explicitly antisymmetrized atomic-product forms to a common invariant subspace, and the nature of a chemical bonding descriptor provided by the atomic-product compositions of molecular eigenstates. Concluding remarks indicate additional studies in progress and the prognosis for performing atomic spectral-product calculations more generally and efficiently

    Evidence of Double Phonon Excitations in ^{16}O + ^{208}Pb Reaction

    Full text link
    The fusion cross-sections for ^{16}O + ^{208}Pb, measured to high precision, enable the extraction of the distribution of fusion barriers. This shows a structure markedly different from the single-barrier which might be expected for fusion of two doubly-closed shell nuclei. The results of exact coupled channel calculations performed to understand the observations are presented. These calculations indicate that coupling to a double octupole phonon excited state in ^{208}Pb is necessary to explain the experimental barrier distributions.Comment: 6 pages, 2 figures, To be published in the Proceedings of the FUSION 97 Conference, South Durras, Australia, March 1997 (J. Phys. G

    A practical guide for the study of human and murine sebaceous glands in situ

    Get PDF
    The skin of most mammals is characterised by the presence of sebaceous glands (SGs), whose predominant constituent cell population is sebocytes, that is, lipid-producing epithelial cells, which develop from the hair follicle. Besides holocrine sebum production (which contributes 90% of skin surface lipids), multiple additional SG functions have emerged. These range from antimicrobial peptide production and immunomodulation, via lipid and hormone synthesis/metabolism, to the provision of an epithelial progenitor cell reservoir. Therefore, in addition to its involvement in common skin diseases (e.g. acne vulgaris), the unfolding diversity of SG functions, both in skin health and disease, has raised interest in this integral component of the pilosebaceous unit. This practical guide provides an introduction to SG biology and to relevant SG histochemical and immunohistochemical techniques, with emphasis placed on in situ evaluation methods that can be easily employed. We propose a range of simple, established markers, which are particularly instructive when addressing specific SG research questions in the two most commonly investigated species in SG research, humans and mice. To facilitate the development of reproducible analysis techniques for the in situ evaluation of SGs, this methods review concludes by suggesting quantitative (immuno-)histomorphometric methods for standardised SG evaluation
    • …
    corecore